Long-term Outcomes of Lung Transplant With Ex Vivo Lung Perfusion

Divithotawela C1, Cypel M1, Martinu T  Singer LG1, Binnie M1, Chow CW1, Chaparro C1, Waddell TK1, de Perrot M1, Pierre A1, Yasufuku K1, Yeung JC1, Donahoe L1, Keshavjee S1, Tikkanen JM1.  (Toronto)                      

JAMA Surg. 2019 Oct 9. doi: 10.1001/jamasurg.2019.4079. [Epub ahead of print]           

IMPORTANCE:
The mortality rate for individuals on the wait list for lung transplant is 15% to 25%, and still only 20% of lungs from multiorgan donors are used for lung transplant. The lung donor pool may be increased by assessing and reconditioning high-risk extended criteria donor lungs with ex vivo lung perfusion (EVLP), with similar short-term outcomes.

OBJECTIVE: 
To assess the long-term outcomes of transplant recipients of donor lungs treated with EVLP. 

Design, Setting, and Participants:  This retrospective cohort single-center study was conducted from August 1, 2008, to February 28, 2017, among 706 recipients of donor lungs not undergoing EVLP and 230 recipients of donor lungs undergoing EVLP.

EXPOSURE:
Donor lungs undergoing EVLP.

MAIN OUTCOMES AND MEASURES:
The incidence of chronic lung allograft dysfunction and allograft survival during the 10-year EVLP era were the primary outcome measures. Secondary outcomes included donor characteristics, maximum predicted percentage of forced expiratory volume in 1 second, acute cellular rejection, and de novo donor-specific antibody development.

RESULTS:
This study included 706 patients (311 women and 395 men; median age, 50 years [interquartile range, 34-61 years]) in the non-EVLP group and 230 patients (85 women and 145 men; median age, 46 years [interquartile range, 32-55 years]) in the EVLP group. The EVLP group donors had a significantly lower mean (SD) Pao2:fraction of inspired oxygen ratio than the non-EVLP group donors (348 [108] vs 422 [88] mm Hg; P < .001), higher prevalence of abnormal chest radiography results (135 of 230 [58.7%] vs 349 of 706 [49.4%]; P = .02), and higher proportion of smoking history (125 of 204 [61.3%] vs 322 of 650 [49.5%]; P = .007). More recipients in the EVLP group received single-lung transplants (62 of 230 [27.0%] vs 100 of 706 [14.2%]; P < .001). There was no significant difference in time to chronic lung allograft dysfunction between the EVLP and non-EVLP group (70% vs 72% at 3 years; 56% vs 56% at 5 years; and 53% vs 36% at 9 years; log-rank P = .68) or allograft survival between the EVLP and non-EVLP groups (73% vs 72% at 3 years; 62% vs 58% at 5 years; and 50% vs 44% at 9 years; log-rank P = .97) between the 2 groups. All secondary outcomes were similar between the 2 groups.

CONCLUSIONS:
Since 2008, 230 of 936 lung transplants (24.6%) in the Toronto Lung Transplant Program were performed after EVLP assessment and treatment. Use of EVLP-treated lungs led to an increase in the number of patients undergoing transplantation, with comparable long-term outcomes.

PMID: 31596484
PMCID: 
PMC6802423 [Available on 2020-10-09]
DOI: 10.1001/jamasurg.2019.4079